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Elastic-Plastic Finite Element Analysis of Automotive
Body Panel Stamping Processes Using Dynamic
Explicit Time Integration Scheme
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(Submitted 2 June 1998; in revised form 25 June 1999)

In this article, the elastic-plastic finite element formulations using dynamic explicit time-integration
schemes are proposed for numerical analysis of automotive body panel stamping processes. A general
formulation of finite element simulation for complex sheet forming processes with arbitrarily shaped
tools is briefly introduced. In finite element simulation of automotive body panel stamping processes, the
robustness and stability of computation are important requirements since the computation time and con-
vergency become major points of consideration besides the solution accuracy due to the complexity of ge-
ometry and boundary conditions. For analyses of more complex cases with larger and more refined
meshes, the explicit method is more time effective than the implicit method, and it has no convergency
problem and has the robust nature of contact and friction algorithms, although the implicit method is
widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and
rigorous, while the rigid-plastic scheme requires short computation time. The performance of the dy-
namic explicit algorithms is investigated by comparing the simulation results of forming of complex-
shaped automotive body parts, such as a fuel tank and a rear hinge, with the experimental results. It has
been shown that dynamic explicit schemes provide quite similar results to the experimental results. It is
thus shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective
computation for complicated automotive body panel stamping processes.

Keywords automotive body panel stamping, dynamic explicit, sheet metal forming process can be characterized as being, to a
elastic-plastic, finite element method, sheet metal high degree, a nonlinear event. This is not only due to geomet-
forming ric and material nonlinearity, but also to variation in the contact

conditions. Traditional instabilities occurring in the typical

deep-drawing process—formation of wrinkles and necking—
also give rise to additional nonlinear effects. Due to these
strong nonlinear effects, the implicit methods often fail to con-

Itis possr:bletr;owa}days to S|mulatetrr11urnerllcally, W'ﬂt] .good (¥erge, whereas the explicit integration technique does not con-
accuracy, sheet forming processes with simple geometries ang,; “iis pitfall: it always leads to a solution.

small changes in contact surfaces; therefore, such examples ap- The explicit dynamic algorithm has several significant ad-

;S)te”?;ln ?::tng:;]lcgf'Z:fr;?tl':]e;?:;grDisp;;\g'g S:Crceelisast;l?zrne d'\?antages over a conventional implicit static algorithm for the
9 y P sheet metal forming processes. First, in the explicit method,

cost-effective algorithm for practical analysis of industrial there is no banded equation solver like Newton-Raphson

problems to treat complex, irregularly curved geometries andmethod. Consequently, the computational cost of a solution

large relative displacements between sheet material and dlesdoes not grow quadratically with the problem size. In general,

The methods used successfully for simple simulations may notthe computational cost increases linearly depending on the

always be useful for more complex problems. Finally, effi- - S .
. ; . problem size of the explicit dynamic procedure. Second, large
ciency and robustness of the solution are very important, and - - . i
deformation, sliding, and three-dimensional contact con-

this problem cannot be solved simply, even if the more ad- X ) : . -
straints are relatively easy to implement in the explicit proce-
vanced computers are used. dure

: . . u
During the last decade, a tremendous increase in the number . . . .
9 The kinematic contact constraints can be enforced explicitly

of papers treating finite element simulation of sheet metall.k the direct trial-and thod. si there i "
forming has been seen. In the later part of the period, a move' Ie € lrt'sl‘cblrla '?jn r;erro.r me ci ,tsmced.t.ere '3 no etqua lon
away from static implicit finite element methods (FEMSs) to dy- solveravaiiable and changing contact conditions do notrequire

namic explicit FEMs has appeared. The main reason why thebandW|dth optimization considerations. The major disadvan-

explicit technique has so rapidly come into focus, both in the tage_c_)f the explici_t dynamic procedure Is the possible static ir_"
academic world and in industry, is quite obvious. A general stability of a solution to the time- and rate-dependent dynamic
procedure. Generally, this requires the artificial time scaling for
- - - - - the analysis to achieve an economical solution. Typically, the
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1. Introduction
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During the last decade, two major approaches have usually This article concentrates on one of several choices, namely
been employed in analyzing the large deformation of sheet metfor the elastic-plastic material model, and investigates the in-
als FEM, rigid-plastic FEM and elastic-plastic FEM, depend- fluence of this model on the performance of the dynamic ex-
ing on the type of constitutive laws. In the rigid-plastic FEM, plicit simulation of sheet forming processes. The performance
the elastic strain is ignored. It is not necessary to check the yieldof the proposed elastic-plastic algorithm is investigated, and
condition during the computation procedure, and thus the com-the numerical results are compared to the results of experiment.
puting time can be greatly reduced. These advantages havdhis is followed by a discussion and conclusions concerning
made the rigid-plastic FEM better for analyzing the metal form- accuracy, robustness, and efficiency of the tested models.
ing process in spite of some numerical drawbacks. Despite the ~ The practical application of the finite element method to a
practical efficiency of the rigid-plastic FEM, it suffers a severe full three-dimensional problem is still difficult due to large
drawback in that it fails to predict the stress history whenever computation time, complexity in contact treatment, unknown
elastic loading or unloading from the plastic state is encoun-boundary conditions, huge amount of time-consuming tool
tered. Accurate computations of the complete stress and the dedata preparation, and so forth.
formation history are useful in predicting the final mechanical

roperties of the product and the possible defects in it. In addi- . . . .
'Ei)onF,) the rigid-plapstic FEM is inagpropriate for problems in- 2- Elastic-Plastic Constitutive Equations
volving a significant effect of elastic unloading. In sheet metal
forming, the amount of elastically recovered displacement is A deformed body is considered in three-dimensional space
relatively large even though the elastically recovered strain is (Fig. 1). In analyzing the nonsteady-state deformation by a
small, because the dimension of thickness is much smaller tharstep-by-step procedure, consider the deformation during one
other dimensions of the sheet metal. step from time, to time p + At.

The material model influencing efficiency and possibly also 1N Fig. 1,6 and6? are taken as the surface convected coor-
numerical stability is an important part of the algorithm. In met- dinates, and th@® axis is taken to be the direction normal to the
al forming applications, both rigid-plastic and elastic-plastic Sheet surface. L& andg,g be the metric tensors of the un-
models have been utilized. The application of elastic-plastic re-déformed and deformed configurations _ancG%@ and ¢ be
lations for metal forming was dated from earlier papers by Lee their respective inverses. Base vectors in the undeformed con-
and Kobayashi (Ref 1) and Wang and Budiansky (Ref 2) andfiguration are denoted @a and their reciprocals by?"ESimi-
was connected with the “solid” approach. Itis well-known that 1ary. the base vectors in the deformed body are denoted by
the elastic-plastic models are less time efficient than the rigid-anOI their reciprocals bgf'
plastic models because of their greater complexity. The formu-
lations and solution methods used, although based on the- _ 90X 0 x

general idea of the FEM, constitute by no means a single ap- ®~ 5 gu € = 9o (Eq 1)
proach. The major issues to be decided when developing the
formulation of the forming code include choice of general solu-
tion method (implicit or explicit), “solid” or “flow” formula-  Gug=Eq Bz Gop = €4 [Eg (Eq2)
tion, frictional contact models, and material models, among
others. EoB = GGBEB e = gGBeB (Eq 3)
X3%,
A The displacement vectarfrom the undeformed configura-
g tion is:
P U =UlE, = u,E® = uE? (Eq 4)
2 3
_— 6 u o whereu® = G“BuB. It is implied that the Greek indices refer to
¥ Q X b the convected coordinates and Latin indices refer to the rectan-
X gular Cartesian coordinates. The Lagrangian strain tersor
& the convected coordinates system is then given by:
X 91 Qf»af
5 € = £,pEYEP = e9PE, Ep (Eq 5)
T 1 1
g g €ap = 5(9ap ~ Gap) = 5(Uap + U + Uiq Uyp) (Eq 6)
g ok . . o :
% s where the comma denotes covariant differentiation with re-
ARSI

spect to the undeformed metric. Decomposing the Lagrangian
Fig. 1 Convected coordinate system in the deformation process ~Stress tensor into a linear part and a nonlinear part gives:
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€ap = Cap * Mg (EQ7) (9Bt *20 = (B, + 0 (Eq 13)

where: The working material can be assumed to be incompressible for

plastically deforming solids. Then, the Kirchhoff stress tensor

_1 _1 1 is equal to the Cauchy stress tersor
€ap=5Uap*Upa)  MNap =35 Uyp a Y

The updated Lagrangian equation considering the large defor-3- General Description of the Dynamic Explicit

mation is given as: Formulation
J' AP, adV + .[ TRk, 5uk’[3 dv A nonlinear finite element equation of motion is obtained
Vo Vo from the principle of virtual work that is the weak form for
_ (t + ) op equilibrium equation. The weak form, which includes internal
‘I tivo dudsS- I T &aﬁdv (Eq 8) force, contact/friction force, inertia force, damping force, ex-
g % AR )
t ternal force, and boundary condition, is described as follows
(Ref6):

Detailed derivation for Eq 8 can be found in the Appendix to
the work by Shim and Yang (Ref 3).

If the constitutive tensor is taken for the second Piola-Kirch- J' SZ')Edv+I poii&ldv-f pob5UdV—_[ F,ouds
hoff stress increment and Lagrangian strain, then: ve Ve Ve S

1
Pisg + 1.5 _
AS'P = L9Bwe, (Eq 9) + z Is (Pcag, Tc. g.T) ds=0 (Eq 14)
iz1 = Contact friction

The detailed formulation regarding Eq 9 can be found in the
Appendix to the work by Shim and Yang (Ref 3). The compo- \here S means the surface that is subjected to the external
nents of the elastic-plastic constitutive tensor satisfying Hill's force’ an(ﬁ means the surface in contact. The left-hand side of
anisotropic yield function, normality, and consistency rule are Eq 14 includes the terms for internal work, inertia work, work
found as (Ref 4, 5): done by body force, work exerted by the stress-boundary con-
dition, and work consumption due to contact and friction. In fi-

LaByp = EQ1+R) [Il( aygBo + gPEBY) + ReB v pite eleme_nt discreti;ation of. Eq 14, the i.nternal. work term
TTior 29T )+ Rdg o includes either material behavior model or kinematic model ac-

2ap cording to element types.
- _ET—Typ 21 (go¥TPP + gPYraP + gaPTRY + gBPTaY) If membrane model, material behavior model, element
oXE+h) 2 shape function, and dynamics of rigid body are introduced into

(Eq 10) the principle of virtual work, a nonlinear finite element equa-
tion of motion can be obtained. The nonlinear finite element
equation can be expressed by the following matrix form at time

where the Greek indices range over 1 to 2. tepn:

S
Combining Egq 8 and 9, a resultant updated Lagrangian
equation is obtained for the elastic-plastic solid:
My + [CT P+ Ff = R =0 (Eq 15)
ou; 0dy
_|' LaBvee, .5e,,dV + _|' 0B O—dVv
v BT ) gea g8 . . . .
From Eq 15, in order to obtain a solution at time stepl, the

= J’ t{t,+ 49 5uidS_J’ TaBéeaBdV (Eq 11) central difference method for the time discretization of accel-
£ Ve eration and velocity is introduced:

As the components of the second Piola-Kirchhoff stress ten-

. " Uneyp " Unogp Upeg T 2Up + Uy g
sor are equal to the components of the Kirchhoff stress tensor ind, = =

2
the convected coordinate system, the stress integration proce- At 2t

dure is very simple compared with other coordinate systems. Uns1 ~ Un . Upeg— Uy

Once the approximations to the displacement increments havehn+1/2 = At or u,= T oat (Eq 16)

been calculated using Eq 11, the stress components corre-
sponding to timé, + At are calculated using Eq 9.

If Eq 16 is substituted into Eq 15 and rearranged, the follow-
(SRt *+ A1) = (SPBYt, + ASP (Eq12) ing equation can be obtained accordingly:
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oM CcCQo M oM cQO whereu, is the relative displacement vector of node 2 with re-

%F * EBU“” =FnPr = Rent 2 tn %F B Egun‘l spect to node 5 ang is that of node 8 with respect to node 5.
(Eq 17) Then, Eq 21 can be described in the following matrix form:
36 = [n)[u]T (Eq 22)

The central difference method has selective convergency
according to the magnitudedf, and the accuracy and conver-
gency are linearly proportional to the squard&bfNodal dis-
placements can be obtained at time stefl by Eq 17, then the
deformation area is updated. A new magnitude of time incre-[N] =
ment to guarantee convergency should be decided according to
the updated deformation. The magnitude of global time incre-

where:

° - 4 n, n,n, n.n. n._n, n_ n. n. nQd
ment can be determined by the following equation after calcu- D‘%, —%, le, % % % +%, # % —%, —%, —%
lating the time increment of every element: e
At,,, = a min A, Aty, .. ., Aty (Eq 18) [U] = [ug, vq, Wy, U, Vo, W), Ug, Vg, Wy

For the evaluation of the rotational bending energy with re-

whereN is the total element number aAg is the time incre-  gpect (g this incremental rotated angle, itis assumed that a rota-
ment of theth element. Also, the safe constaritas oftenbeen (o4 spring is included in node 5, whose rotational stiffness is

selected to be less than 0.9. k., as shown in Fig. 2. Therefore, the rotational bending energy

The critical time increment is determined as follows: due to this node spring is expressed as:
At.=LJC Eq 19 1
o=t (Ea19) g > .36 (Eq 23)
wherelg is the characteristic length that is the given element
area divided by the largest edge. On substituting Eq 22 into Eq 23 and differentiating the re-
The propagation speétlis determined as: sulting equation twice with respect td]junder the assumption

thatk, and ] are independent of the displacemehtpbduring
one step, the rotational bending stiffness is obtained by:

Ve
c=Vy (Ea20) (K150 =K, [nn] (Eq 24)
6
3.1 Bending Energy Augmented Membrane Element t‘L /3N Lte
In spite of numerous advantages of the membrane theory, - ® N 8.
the conventional membrane formulation is not appropriate for l
problems that involve the considerable effect of bending and

shape change. Especially in deep drawing with tools of com-
plex geometry, numerical buckling may occur in the course of
computation at the free surface of deforming sheet metal,
which is not observed in the real forming processes. Therefore,
in order to maintain the advantages of membrane elements and
to overcome such drawbacks a bending energy augmented
membrane (BEAM) element (Ref 7) is used.

3.2 Rotational Bending Stiffness for BEAM Element

For the sake of simplicity of conceptual explanation, three
nodes lying in one plane are considered; they are connected to
each other by simple bar elements, as shown in Fig. 2.

LetL,, Ly, ny, N, be the length and the normal vectors of two
bar elements, respectively. Then, the incremental rotated angle
between a bar 2-5 and a bar 5-8 during one step can be ex-
pressed by:

1 1 Fig. 2 Schematic of the in-plane rotational spring and drilling

30 = TN Cuy, = —n, [, (Eq 21) degrees of freedom
1
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From the above considerations, the rotational bending stiff- 3¢ = [t][U]T
ness derived in this way can be described only with respect to
the related degrees of freedom of nodes neighboring a node . . L
which there is concern, for example, node 5, without any addiﬁherefzre' .the bending energy due to this node spring is ex-
tional increase in the total number of equations. pressed as.

(Eq 29)

. . . . 1
3.3 Rotational Damping and Spring Applied to the Esa=3 K 4062
Drilling Direction for Dynamic Analysis

(Eq 30)

In dynam|c analysis, In order to. prevent a Zero-energy  rpgq spring coefficieny is an empirical artificial value that
mode, both in-plane rotational damping and rotational spring .

L - oo is sufficiently small. On substituting Eq 29 into Eq 30 and dif-
are applled n t.he drilling d|rept|0n (Ref 6.)' The same method asferentiating twice with respect tt)] under the assumption that
applying bending-edge rotational damping is considered, but

the tangent vectors are used to obtain a normal vector of theKd and [] are independent of the displacemau} furing one

drilling direction. Therefore, in Fig. 2 the drilling angular ve- step, the corresponding stiffness is obtained as:
locity between bar 2-5 and bar 5-8 during one step can be ex-

pressed as: [KI§xg = K[l T[] (Eq 31)
50 = Tlltl w, - letz i, (Eq25) 3.4 Lumping Scheme

The computational efficiency and accuracy of the explicit
procedure is based on the implementation of an explicit inte-

wheret, andt, are the tangential vectors of two elements.
Equation 25 can be described in the matrix form as:

36 = [{[U]T (Eq 26)

where

gration rule along with the use of lumped element mass matri-
ces (Ref 8-11).

[M][a] = [F], [a] = [MI7{F] (Eq 32)

If matrix [M] is lumped as a diagonal matrix, matrix in-

version is not needed, and a solution can be directly obtained
_ by a linear equatiors; = m1f,. The lumping scheme is com-
[1= putationally economic because matrix inversion involves
large computing time. Often in dynamic analysis, the use of
lumping mass renders more accurate results than consistent

Oty _te fuc, f by L

t,, t t t t t,,0
Jy iz e b By Y

] . . : : T T 0
L . . .
gte bbb bbb L Ly L Lo In this study, the lumping scheme is expressed as:
[0] = [0y, ¥y, Wy, U, Vi, Wy, U, Vi, W] 5 [ pN2dQ, a=b
me, = @1 ! er e (Eq 33)
_ _ 0 o, azb
Therefore, the damping energy due to the in-plane rota- O
tional damping about the drilling direction of a node is ex-
pressed as: where
E, =LC,562 (Eq 27 J . pd0
dd =5 Cd q27) Qe
a (Totalelemeny
The corresponding damping coefficie@, is an empirical Teg
artificial value that is sufficiently small. The in-plane rotational ZJ’ PN2dQ
spring can be considered in a similar manner. The correspond- w1

ing incremental angle between bar 2-5 and bar 5-8 during one

step can be expressed by: [Amountof diagonal [

%ntries ofcon sistentma%

5=-1t [l -t 0,

L (Eq 28)

whereQ¢®is element domaii,andqg are element equation num-
bers, andh andb are element node numbers. In this method,
lumped mass is proportional to the diagonal part of the consis-
whereu, is the relative displacement vector of node 2 with re- tent mass matrix and the positive valued lumped mass can be al-
spect to node 5 ang is that of node 8 with respectto node 5.  ways obtained. In the above equation, the constastised to

Then, Eq 28 can be described in the matrix form as: conserve the total element mass.
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3.5 The Efficient Contact and Friction Treatment
Scheme for Dynamic Explicit Integration

The explicit contact algorithm takes advantage of a small

of small increments is advantageous in that it vastly simplifies
the implementation of contact conditions.
In the work described in this article, the contact and friction

time increment required by the stability limit (Ref 8). The use Scheme is the mixed form of the skew boundary condition and

»
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Fig. 3 Schematic of the contact scheme. (a) Impending contact
of two surfaces. (b) Surfaces in predicted configuration. (c) Ki-
nematically compliant surfaces

T
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Fig. 4 Schematic of friction and stick/slip check
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the direct trial-and-error method (Ref 9). The accelerations,
velocities, and displacements are calculated first without tak-
ing the contact conditions into consideration. Then, the pene-
tration distancén and the tool and sheet normal directions of
contact points are calculated as in Fig. 3.

From the above calculation, the skew boundary condition is
applied and the resisting force to prevent the penetration of a
node is readily calculated as:

N = mhr/At2 (Eq 34)

wheremis a nodal lumping mass ands a normal vector. If it
is assumed that the motion of the tools is not influenced by the
contact itself, the acceleration changes as:

a=3redt Acorr= Apredt N/m (Eq 35)

and the corrections to the velocity and displacement are calcu-
lated as:

V= Vpred+ acorlm u= upred+ VconAt (Eq 36)

For friction, the increment is first solved without taking fric-
tion into consideration, and the skew boundary condition is ap-
plied in Fig. 4. Under the skew boundary condition, it is not
necessary to define a surface directjoaong which a slip in-
crement . is measured. The resisting fortgrequired to pre-
vent slip is then calculated in the same way as the calculation of
the force required to prevent penetration:

T, = -mrJAt? (Eq 37)

wherer . is the slip increment.
Accordingly, the friction force is calculated as:

;
Thrict = IT_ZI min (T, T) (Eq 38)

The resisting forc&|| is compared with the critical fordg,

= uIN|. If the resisting force is less than the critical force, a

sticking condition is assumed and then the resisting force is
simply applied. If the resisting force is larger than the critical

force, a slipping condition is assumed and the friction force is
assumed to obey Coulomb’s friction law. The procedures of
friction force calculation and stick/slip check are summarized

in Fig. 5.
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4. Results and Discussion ignoring the draw beads. For the dynamic explicit simulations,
three-node damping energy augmented BEAM element is
used. The blank has an original rectangular shape of 1020 by

4.1 Deep Drawing of a Fuel Tank 700 mm and 2400 triangular elements are employed.
A fuel tank is difficult to simulate because the tool surface as ;I’ok;ltzvr\l/wsa}terlal and process variables used in the analysis are

geometry has embossing in order to impose the rigidity in the
middle part of the product, and there exists higher-order non-,
linearities of contact and friction. For implicit analysis, the con-
verged results cannot be obtained due to complex geometry MPa
including the embossing. The rigid tool is modeled by CATIA ,

computer-aided  design/computer-aided  manufacturing©  Young’s modulusg = 2x 10° MPa

(CAD/CAM) system (Dassautt Systems, Suresnes, France).® Lankford value for normal anisotropys 1.79

Figure 6 shows the entire tool surface described with 31,800°  Coulomb coefficient of frictiont = 0.1

nonparametric patches. In the case of complex large-scale  Blankholding force, 890 kN

problems, the consuming time of contact treatment with non- ]

parametric scheme is 4 to 5 times shorter than parametric_ Coulomb forces are computed and assigned to these nodes.
scheme (Ref 12). Figure 7 shows the photograph of the de__The explicit ana!yS|s is carried putwnhaconsta_mt punch veloc-
formed experimental shape at the final punch stroke. In actuality of 10 m/s. This punch velocity of 10 m/s, which does not af-
practice, the product contains embossed reinforcements to imfect solution reliability and is able to provide economic
pose rigidity in the middle part of the product and has draw analysis, is chosen from the numerical tests of various punch

beads. In the simulation, however, the tool was simplified by SPeed. In the same way, for economic analysis the mass-scaling
scheme in which 50 times the real density, which does not af-

fect solution reliability, is employed. The velocity scaling and

Initial sheet thickness, 0.8 mm
Stress-strain characteristios,= 526.0 (0.0074 £ )0.239

. mass scaling methods have identical effects on solution time
L1 I—
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Fig. 5 Flow chart for friction force calculation and stick/slip Fig. 6 Schematic view of the nonparametric tool surfaces for
check fuel tank stamping
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and accuracy in attempting to find a static solution using a dy-formed edge contour predicted by the present analysis with the
namic explicit formulation from simulation results because of experimental results. The edge contour is somewhat different
not using the rate-dependent material. If the rate-dependenfrom the experimental result. This discrepancy is partly due to
material is used, the effects of the two scaling methods may bethe lack of draw beads. Figure 9 shows the deformed configu-
have differently. Figure 8 shows the comparison of the de- ration and thickness strain distribution by the dynamic explicit
analysis at the punch stroke of 113 mm. This dynamic explicit
analysis predicts well the most fragile region, which has a steep
slope and sharp corner as shown in Fig. 7. To investigate the
simulated results in more detail, the thickness strain distribu-
tion at an arbitrarily chosen section is compared with the ex-
perimental results in Fig. 10. The overall tendency of strain
distribution is similar to the experimental results. However, a
little higher strain level in the dynamic explicit analysis is ob-
tained because of the faster punch velocity and the mass scaling
scheme employed for the efficient analysis. The deviation can
be considered from the introduction of many assumptions for
the efficient and simple analysis, the limitation of analysis code
itself, the measurement error of experimental results, and so
forth. The whole computation time of the dynamic explicit
elastic-plastic scheme takes about 4 h in HP/730 workstation
(Hewlett Packard Co.). From the above example, the devel-
oped dynamic explicit elastic-plastic scheme has been success-
fully applied to the difficult and complicated three-dimensional
automotive body panel stamping problems.

4.2 Deep Drawing of a Rear Hinge

The rear hinge is one of the important sheet metal parts that
make up the body of a car and is one of difficult-to-form sheet
parts because it has very complex geometry, steep slope, and
sharp edge and corners. The raw computer-aided engineering
(CAE) surface data are constructed using the commercial CAD
system CATIA. A special conversion module that can generate
a rectangular array of grid points from the raw CAD surface
data is used for the nonparametric patch approach. The blank
has an original rectangular shape of 890 by 512 mm. Unlike the
other sheet metal forming processes, the stamping process of a
rear hinge consists of two stages. In the first stage, the initial
(b) sheet blank is held by the blank holder, that is, the binder sur-
faces, and in the second stage it is further formed into the final
shape of the part. The initial sheet blank at the holding stage has

Fig. 7 Experimental specimens of a fuel tank stamping
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Fig. 9 Thickness strain distribution and deformed configura-
Fig. 8 Comparison of the simulated results with the experi- tion of a fuel tank predicted by the dynamic explicit elastic-plas-
ment for the deformed edge shape: a fuel tank stamping process tic analysis at the final stage
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often been called binder wrap. Thus, the binder wrap analysisiss  Stress-strain characteristicsz 575.0 (0.006 €)0-2IMPa
an indispensable step for the stamping analysis, since it pros  yoyung’s modulusE = 2x 106 MPa

vides such important data for stamping analysis as prediction of, Lankford valuer = 1.88

initial punch contact, draw depth, and so forth. In the work de- an ,r. ’ o

scribed in this article, the binder-wrap analysis, which is con- ° Coulomb coefficient of frictiont = 0.1

sidered the nonlinear elastic finite element method, and the®  Blankholding force, 800 kN

nonparametric patch approach is performed (Ref 13). The rea-

son for using the nonlinear elastic finite element method is that  Coulomb forces are computed and assigned to these nodes.
the elastic-plastic finite element method requires a large For this analysis, 1904 nodes and 3680 triangular damping en-
amount of computational time and does not render any differ-ergy augmented BEAM elements are employed. Figure 11
ence in the shape of the binder wrap. Therefore, the nonlineashows the schematic view of the tool surfaces in the case of
elastic finite element method is more effectively applicable, honparametric patch approach in which 23,432 nonparametric
and the nonparametric patch approach can save much comput®atches are used to describe the punch and the die. Figure 12
tional time. shows the photograph of the deformed experimental shape at

The material and process variables used in the analysis arethe final punch stroke. In actual practice, the product contains
draw beads. In the simulation, however, the tool was simplified

¢ Initial sheet thickness, 1.2 mm by ignoring the draw beads. The explicit analysis was carried
*  Sheet material, cold-rolled steel out with a constant punch velocity of 10 m/s. This punch veloc-
ity of 10 m/s, which does not affect solution reliability and is
153 able to provide economic analysis, is chosen. In the same way,
for efficient analysis the mass-scaling scheme in which 50

is employed. Figure 13 shows the comparison of the deformed
edge contour predicted by the present analysis with the experi-

b A times the real density, which does not affect solution reliability,
E mental results. The edge contour is somewhat different from

700 the experimental result. This discrepancy is partly due to the
lack of draw beads. Figure 14 shows the deformed configura-
tion and thickness strain distribution by the dynamic explicit
analysis at the final configuration (punch stroke =122 mm).

4 LAO The possibility of fracture in side-wall region is higher than in
}‘ .& the upper region because it is in plain strain state even though
1020 those region are in same strain level. This dynamic explicit
@ analysis predicted well the most fragile region. To investigate
the simulated results in more detail, the thickness strain dis-
1 tribution at an arbitrarily chosen section was compared with
0,15+ ‘ ‘ the experimental results in Fig. 15. The overall tendency of
' — | Experiment | strain distribution is similar to the experimental results.
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Fig. 10 Thickness strain distribution for a fuel tank stamping 23432 non-parametric patches

process. (a) Baseline on initial sheet blank for strain distribution _ o _
measurement. (b) Comparison of thickness strain distribution on ~ Fig. 11 Schematic view of the nonparametric tool surfaces for
the line rear hinge stamping

Journal of Materials Engineering and Performance Volume 8(6) December 19989727



(b)

NN AR STV Vo .
@“5“@3‘%‘3‘?@}%’% SRR
i AV

R R

‘s*‘g'.@n% RTINS

L2 RAAARR 2 58

AN X AR

R %

VA WA)
I AN -
SN2 KA 2 JESENS
NG {?;;?r%%s‘l‘%:‘»‘w\\'&;
NIRRT IASAY
AN RaE
N RIRRREHTEATN
ORI PR 2R
5 Y | RS
P YA

sy

B

o Y
Ay, SRS S
; & -va:“' v‘r“ RSREISA
PR RS
- -;;-q;m@,, Y 1 SR

1 2 3
0.109301 0.008743 -0.091816

Fig. 14 Thickness strain distribution and deformed configura-
tion of a rear hinge predicted by the dynamic explicit elastic-

plastic analysis at the final stage
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However, a little higher strain level in the dynamic explicit 2. N.M. Wang and B. Budiansky, Analysis of Sheet Metal Stamping
analysis is obtained because of the faster punch velocity and the by a Finite Element Method, Appl. Mech.\Vol 45, March 1978,
mass-scaling scheme employed for the efficient analysis. The P 73-82 _ _ o
deviation might be considered to originate from the introduc- 3 :ﬁgiyfirsmc?n ?_?fdr?)-s‘t(é&aggigﬁ% Ef'asggt';'gitl'gr ';g;iri'gen’?seg;
tion .Of many assumpthns for the efficient and simple analysis, Using Layered Degenerated Shell Elemeits, J. Mech. Sci.,
the limitation of analysis code itself, the measurement error of 32,1990, p 49-64
experlmental_resultg,_and SO forth. 'I_'he whole computation time 4. N.M. Wang and S.C. Tang, Analysis of Bending Effects in Sheet
of the dynamic explicit elastic-plastic scheme took about8.5h  Forming Operationdnt. J. Numer. Methods Eng/ol 25, 1988,
on a CRAY C90 (Silicon Graphics, Inc.). From the analysis, it p 253-267
is found that the dynamic explicit elastic-plastic method can be 5. k. Mattiason, Numerical Simulation of Stretching Processes, S-
effectively applied to the huge and extremely difficult prob- MOP-I1, Proc. of the First Int. Worksho[. Lange, Ed., Stuttgart,
lems of automotive body panel stamping. 1985, p 170-213
6. D.Y. Yang, D.W. Jung, |.S. Song, D.J. Yoo, and J.H. Lee, Com-
parative Investigation into Implicit, Explicit and Iterative Im-
5. Conclusions plicit/Explicit Schemes for the Simulation of Sheet-Metal
Forming Processesd, Mater. Process. TechnolMpl 50, 1995,
. . . - p 39-53
The pgrfqrmange of the elastlc-plastlc.dynamlc explicit al- 7. D.J. Yoo, I.S. Song, D.Y. Yang, and J.H. Lee, Rigid-Plastic Fi-
gorithms is '”VeSt'Qated’ and the ”lﬂme”ca' results are com- nite Element Analysis of Sheet Metal Forming Processes Using
pared to the experimental results with good agreement. Deep  Continuous Contact Treatment and Membrane Elements Incor-
drawings with complex irregular die geometries such as form-  porating Bending Effectnt. J. Mech. Sci.yol 36 (No. 6), 1994,
ing of a fuel tank and a rear hinge are simulated. Provided that p 513-546
the overall numerical model is properly derived, the authors 8. J.C. Nagtegaal and L.M. Taylor, Comparison of Implicit and Ex-
have shown that the elastic-plastic dynamic explicit formula-  plicit Finite Element Methods for Analysis of the FE-Sim. of 3-D
tion is an accurate, efficient, and wide-ranging tool for simula- ~ Sheet Metal Forming Processésitomotive Ind. ConfJ. Reiss-
tion of complex automotive body panel stamping problems. ner, etal., Bd., VDI Verlag, Dusseldorf, 1991

In sheet metal forming, the amount of elastically recovered 9 ABAQUS/Explicit: User's Examples and Theory Manuals, Hib-
bitt, Karlsson and Sorensen, 1991

displacement is relatively large, even though the elastically re- ) L

covered strain is small, becaqse the dirr_lensiqn of thickness i 0. EﬁmH;;mgnénE Fli?ecl)glt(e’dag?m%;e??nnl:flliwllz(i:rfi’t:Ell\leor:]Zr?tnM'\g%Sosd,
much smaller as compared with other dimensions of the sheet  garthquake Eng. Struct. Dynamiogl 4 (No. 3), 1976, p 145-
metal. Highly nonlinear analysis of sheet forming is, by the na- 149

ture of the process modeled, not very stable. The elastic-plastiq1. k.S. Surana, Lumped Mass Matrices with Non-Zero Inertia for
model is considered to be more numerically stable since it in-  General Shell and Axisymmetric Shell Elemerts, J. Numer.
cludes elastic effects. During sheet forming, especially in com-  Methods Eng.Vol 12 (No. 11), 1978, p 1635-1650

plex deep drawing, relatively large parts of the sheet cease to b&2. D.J. Yoo, “Analysis of Three-Dimensional Sheet Metal Forming

plastically deformed. Processes Using Continuous Surface and Contact Treatment,”
Ph.D. thesis, Korea Advanced Institute of Science and Technol-
ogy, 1994
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