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In this article, the elastic-plastic finite element formulations using dynamic explicit time-integration
schemes are proposed for numerical analysis of automotive body panel stamping processes. A general
formulation of finite element simulation for complex sheet forming processes with arbitrarily shaped
tools is briefly introduced. In finite element simulation of automotive body panel stamping processes, the
robustness and stability of computation are important requirements since the computation time and con-
vergency become major points of consideration besides the solution accuracy due to the complexity of ge-
ometry and boundary conditions. For analyses of more complex cases with larger and more refined
meshes, the explicit method is more time effective than the implicit method, and it has no convergency
problem and has the robust nature of contact and friction algorithms, although the implicit method is
widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and
rigorous, while the rigid-plastic scheme requires short computation time. The performance of the dy-
namic explicit algorithms is investigated by comparing the simulation results of forming of complex-
shaped automotive body parts, such as a fuel tank and a rear hinge, with the experimental results. It has
been shown that dynamic explicit schemes provide quite similar results to the experimental results. It is
thus shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective
computation for complicated automotive body panel stamping processes.

1. Introduction

It is possible nowadays to simulate numerically, with good
accuracy, sheet forming processes with simple geometries and
small changes in contact surfaces; therefore, such examples ap-
pear in abundance in the literature. Despite this success, there is
still a great deal of effort necessary to develop a reliable and
cost-effective algorithm for practical analysis of industrial
problems to treat complex, irregularly curved geometries and
large relative displacements between sheet material and dies.
The methods used successfully for simple simulations may not
always be useful for more complex problems. Finally, effi-
ciency and robustness of the solution are very important, and
this problem cannot be solved simply, even if the more ad-
vanced computers are used.

During the last decade, a tremendous increase in the number
of papers treating finite element simulation of sheet metal
forming has been seen. In the later part of the period, a move
away from static implicit finite element methods (FEMs) to dy-
namic explicit FEMs has appeared. The main reason why the
explicit technique has so rapidly come into focus, both in the
academic world and in industry, is quite obvious. A general

sheet metal forming process can be characterized as being, to a
high degree, a nonlinear event. This is not only due to geomet-
ric and material nonlinearity, but also to variation in the contact
conditions. Traditional instabilities occurring in the typical
deep-drawing process—formation of wrinkles and necking—
also give rise to additional nonlinear effects. Due to these
strong nonlinear effects, the implicit methods often fail to con-
verge, whereas the explicit integration technique does not con-
tain this pitfall; it always leads to a solution.

The explicit dynamic algorithm has several significant ad-
vantages over a conventional implicit static algorithm for the
sheet metal forming processes. First, in the explicit method,
there is no banded equation solver like Newton-Raphson
method. Consequently, the computational cost of a solution
does not grow quadratically with the problem size. In general,
the computational cost increases linearly depending on the
problem size of the explicit dynamic procedure. Second, large
deformation, sliding, and three-dimensional contact con-
straints are relatively easy to implement in the explicit proce-
dure.

The kinematic contact constraints can be enforced explicitly
like the direct trial-and-error method, since there is no equation
solver available and changing contact conditions do not require
bandwidth optimization considerations. The major disadvan-
tage of the explicit dynamic procedure is the possible static in-
stability of a solution to the time- and rate-dependent dynamic
procedure. Generally, this requires the artificial time scaling for
the analysis to achieve an economical solution. Typically, the
dynamic sheet metal forming analysis is performed at punch
velocities around the order of 5 to 20 m/s, under the assumption
of the near-quasi-static solutions.
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During the last decade, two major approaches have usually
been employed in analyzing the large deformation of sheet met-
als FEM, rigid-plastic FEM and elastic-plastic FEM, depend-
ing on the type of constitutive laws. In the rigid-plastic FEM,
the elastic strain is ignored. It is not necessary to check the yield
condition during the computation procedure, and thus the com-
puting time can be greatly reduced. These advantages have
made the rigid-plastic FEM better for analyzing the metal form-
ing process in spite of some numerical drawbacks. Despite the
practical efficiency of the rigid-plastic FEM, it suffers a severe
drawback in that it fails to predict the stress history whenever
elastic loading or unloading from the plastic state is encoun-
tered. Accurate computations of the complete stress and the de-
formation history are useful in predicting the final mechanical
properties of the product and the possible defects in it. In addi-
tion, the rigid-plastic FEM is inappropriate for problems in-
volving a significant effect of elastic unloading. In sheet metal
forming, the amount of elastically recovered displacement is
relatively large even though the elastically recovered strain is
small, because the dimension of thickness is much smaller than
other dimensions of the sheet metal.

The material model influencing efficiency and possibly also
numerical stability is an important part of the algorithm. In met-
al forming applications, both rigid-plastic and elastic-plastic
models have been utilized. The application of elastic-plastic re-
lations for metal forming was dated from earlier papers by Lee
and Kobayashi (Ref 1) and Wang and Budiansky (Ref 2) and
was connected with the “solid”  approach. It is well-known that
the elastic-plastic models are less time efficient than the rigid-
plastic models because of their greater complexity. The formu-
lations and solution methods used, although based on the
general idea of the FEM, constitute by no means a single ap-
proach. The major issues to be decided when developing the
formulation of the forming code include choice of general solu-
tion method (implicit or explicit), “ solid”  or “ flow”  formula-
tion, frictional contact models, and material models, among
others.

This article concentrates on one of several choices, namely
for the elastic-plastic material model, and investigates the in-
fluence of this model on the performance of the dynamic ex-
plicit simulation of sheet forming processes. The performance
of the proposed elastic-plastic algorithm is investigated, and
the numerical results are compared to the results of experiment.
This is followed by a discussion and conclusions concerning
accuracy, robustness, and efficiency of the tested models.

 The practical application of the finite element method to a
full three-dimensional problem is still difficult due to large
computation time, complexity in contact treatment, unknown
boundary conditions, huge amount of time-consuming tool
data preparation, and so forth.

2. Elastic-Plastic Constitutive Equations

A deformed body is considered in three-dimensional space
(Fig. 1). In analyzing the nonsteady-state deformation by a
step-by-step procedure, consider the deformation during one
step from time t0 to time t0 + ∆t.

In Fig. 1, θ1 and θ2 are taken as the surface convected coor-
dinates, and the θ3 axis is taken to be the direction normal to the
sheet surface. Let Gαβ and gαβ be the metric tensors of the un-
deformed and deformed configurations and let Gαβ and gαβ be
their respective inverses. Base vectors in the undeformed con-
figuration are denoted by Eα and their reciprocals by Eα. Simi-
larly, the base vectors in the deformed body are denoted by eα
and their reciprocals by eα.

Eα = 
∂ X

∂ θα
  eα = 

∂ x

∂ θα
(Eq 1)

Gαβ = Eα ⋅ Eβ  gαβ = eα ⋅ eβ (Eq 2)

Eαβ = GαβEβ  eα = gαβeβ (Eq 3)

The displacement vector u from the undeformed configura-
tion is:

u = uαEα = uαEα = u1E
1 (Eq 4)

where uα = Gαβuβ. It is implied that the Greek indices refer to
the convected coordinates and Latin indices refer to the rectan-
gular Cartesian coordinates. The Lagrangian strain tensor ε in
the convected coordinates system is then given by:

ε = εαβEαEβ = εαβEαEβ (Eq 5)

εαβ = 
1
2

(gαβ − Gαβ) = 
1
2

(uα,β + uβ,α + uγ,α uγ,β) (Eq 6)

where the comma denotes covariant differentiation with re-
spect to the undeformed metric. Decomposing the Lagrangian
stress tensor into a linear part and a nonlinear part gives:Fig. 1 Convected coordinate system in the deformation process
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εαβ = eαβ + ηαβ (Eq 7)

where:

eαβ = 
1
2

(uα,β + uβ,α)  ηαβ = 
1
2

uγ,α uγ,β

The updated Lagrangian equation considering the large defor-
mation is given as:

∫  
Vo

 ∆SαβδeαβdV +  ∫  
Vo

 ταβuk,α δuk,β dV

 = ∫  
S

t
o

 t i
(t

o
 + ∆t) δuidS −  ∫  

Vo
 ταβδeαβdV (Eq 8)

Detailed derivation for Eq 8 can be found in the Appendix to
the work by Shim and Yang (Ref 3).

If the constitutive tensor is taken for the second Piola-Kirch-
hoff stress increment and Lagrangian strain, then:

∆Sαβ = Lαβγρeγρ (Eq 9)

The detailed formulation regarding Eq 9 can be found in the
Appendix to the work by Shim and Yang (Ref 3). The compo-
nents of the elastic-plastic constitutive tensor satisfying Hill’s
anisotropic yield function, normality, and consistency rule are
found as (Ref 4, 5):

Lαβγρ = 
E(1 + R)
1 + 2R

 




1
2

(gαγgβρ + gαρgβγ) + Rgαβgγρ



    − Γ 
E2ταβτγρ

σ
__

2(E + h′)
 − 

1
2

 (gαγτβρ + gβγταρ + gαρτβγ + gβρταγ)

(Eq 10)

where the Greek indices range over 1 to 2.
Combining Eq 8 and 9, a resultant updated Lagrangian

equation is obtained for the elastic-plastic solid:

∫ Lαβγρ

Vo
eαβδeγρdV + ∫ ταβ

Vo
 

∂ui

∂ θα
 ⋅ 

∂ δui

∂ θβ  dV

 =  ∫  
S

t
o

t i
(t

o
 + ∆t) δuidS − ∫ ταβ

Vo
δeαβdV (Eq 11)

As the components of the second Piola-Kirchhoff stress ten-
sor are equal to the components of the Kirchhoff stress tensor in
the convected coordinate system, the stress integration proce-
dure is very simple compared with other coordinate systems.
Once the approximations to the displacement increments have
been calculated using Eq 11, the stress components corre-
sponding to time to + ∆t are calculated using Eq 9.

(Sαβ)(t
o
 + ∆t) = (Sαβ)t

o + ∆Sαβ (Eq 12)

(ταβ)(t
o
 + ∆t) = (Sαβ)(t

o
 + ∆t) (Eq 13)

The working material can be assumed to be incompressible for
plastically deforming solids. Then, the Kirchhoff stress tensor
τ is equal to the Cauchy stress tensor σ.

3. General Description of the Dynamic Explicit
Formulation

A nonlinear finite element equation of motion is obtained
from the principle of virtual work that is the weak form for
equilibrium equation. The weak form, which includes internal
force, contact/friction force, inertia force, damping force, ex-
ternal force, and boundary condition, is described as follows
(Ref 6):

∫  
Vo

SδEdv + ∫ ρo
Vo

x
..
δudv − ∫ ρo

Vo
bδudv − ∫  

S
Foδuds

 + ∑ 

i=1

1

 ∫  
S

i

 (Pc
i δgn

i  + τcδgT
i )

Contact + fr iction
 dS = 0 (Eq 14)

where S means the surface that is subjected to the external
force, and Si means the surface in contact. The left-hand side of
Eq 14 includes the terms for internal work, inertia work, work
done by body force, work exerted by the stress-boundary con-
dition, and work consumption due to contact and friction. In fi-
nite element discretization of Eq 14, the internal work term
includes either material behavior model or kinematic model ac-
cording to element types.

If membrane model, material behavior model, element
shape function, and dynamics of rigid body are introduced into
the principle of virtual work, a nonlinear finite element equa-
tion of motion can be obtained. The nonlinear finite element
equation can be expressed by the following matrix form at time
step n:

[M] 


u
..

n



 + [C]



u
.
n




 + 



Pn




 + 



Fn




 − 



Rcn




 = 0 (Eq 15)

From Eq 15, in order to obtain a solution at time step n + 1, the
central difference method for the time discretization of accel-
eration and velocity is introduced:

u
..

n = 
u
.
n+1/2 − u

.
n −1/2

∆t
 = 

un+1 − 2un + un−1

2∆t2

u
.
n+1/2 = 

un+1 − un

∆t
 or u

.
n = 

un+1 − un−1

2∆t
(Eq 16)

If Eq 16 is substituted into Eq 15 and rearranged, the follow-
ing equation can be obtained accordingly:
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



M

∆t2
 + 

C

2∆t



 un+1 = Fn − Pn − Rcn + 

M

∆t2
 un − 



M

∆t2
 − 

C

2∆t



 un−1

(Eq 17)

The central difference method has selective convergency
according to the magnitude of ∆t, and the accuracy and conver-
gency are linearly proportional to the square of ∆t. Nodal dis-
placements can be obtained at time step n + 1 by Eq 17, then the
deformation area is updated. A new magnitude of time incre-
ment to guarantee convergency should be decided according to
the updated deformation. The magnitude of global time incre-
ment can be determined by the following equation after calcu-
lating the time increment of every element:

∆tn+1 = α min 



∆t1, ∆t2, . . ., ∆tN





(Eq 18)

where N is the total element number and ∆ti is the time incre-
ment of the ith element. Also, the safe constant α has often been
selected to be less than 0.9.

The critical time increment is determined as follows:

∆tc = Ls/C (Eq 19)

where Ls is the characteristic length that is the given element
area divided by the largest edge.

The propagation speed C is determined as:

C = √Et

ρ
(Eq 20)

3.1 Bending Energy Augmented Membrane Element

In spite of numerous advantages of the membrane theory,
the conventional membrane formulation is not appropriate for
problems that involve the considerable effect of bending and
shape change. Especially in deep drawing with tools of com-
plex geometry, numerical buckling may occur in the course of
computation at the free surface of deforming sheet metal,
which is not observed in the real forming processes. Therefore,
in order to maintain the advantages of membrane elements and
to overcome such drawbacks a bending energy augmented
membrane (BEAM) element (Ref 7) is used.

3.2 Rotational Bending Stiffness for BEAM Element

For the sake of simplicity of conceptual explanation, three
nodes lying in one plane are considered; they are connected to
each other by simple bar elements, as shown in Fig. 2.

Let L1, L2, n1, n2 be the length and the normal vectors of two
bar elements, respectively. Then, the incremental rotated angle
between a bar 2-5 and a bar 5-8 during one step can be ex-
pressed by:

δθ = − 1
L1

 n1 ⋅ u1 − 
1
L2

 n2 ⋅ u2 (Eq 21)

where u1 is the relative displacement vector of node 2 with re-
spect to node 5 and u2 is that of node 8 with respect to node 5.

Then, Eq 21 can be described in the following matrix form:

δθ = [n][U]T (Eq 22)

where:

[n] =




−

n1x

L1
, −

n1y

L1
, −

n1z

L1
, 

n1x

L1
 + 

n2x

L2
, 

n1y

L1
 + 

n2y

L2
, 
n1z

L1
 + 

n2z

L2
, −

n2x

L2
, −

n2y

L2
, −

n2z

L2





[U] = [u1, v1, w1, u2, v2, w2, u3, v3, w3]

For the evaluation of the rotational bending energy with re-
spect to this incremental rotated angle, it is assumed that a rota-
tional spring is included in node 5, whose rotational stiffness is
kr, as shown in Fig. 2. Therefore, the rotational bending energy
due to this node spring is expressed as:

Eb = 
1
2

 krδθ2 (Eq 23)

On substituting Eq 22 into Eq 23 and differentiating the re-
sulting equation twice with respect to [U] under the assumption
that kr and [n] are independent of the displacements [U] during
one step, the rotational bending stiffness is obtained by:

[K]9×9
e  = Kr [n]T[n] (Eq 24)

Fig. 2 Schematic of the in-plane rotational spring and drilling
degrees of freedom
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From the above considerations, the rotational bending stiff-
ness derived in this way can be described only with respect to
the related degrees of freedom of nodes neighboring a node at
which there is concern, for example, node 5, without any addi-
tional increase in the total number of equations.

3.3 Rotational Damping and Spring Applied to the
Drilling Direction for Dynamic Analysis

In dynamic analysis, in order to prevent a zero-energy
mode, both in-plane rotational damping and rotational spring
are applied in the drilling direction (Ref 6). The same method as
applying bending-edge rotational damping is considered, but
the tangent vectors are used to obtain a normal vector of the
drilling direction. Therefore, in Fig. 2 the drilling angular ve-
locity between bar 2-5 and bar 5-8 during one step can be ex-
pressed as:

δθ
.
 = − 1

L1
 t1 ⋅ u

.
1 − 

1
L2

 t2 ⋅ u
.
2 (Eq 25)

where t1 and t2 are the tangential vectors of two elements.
Equation 25 can be described in the matrix form as:

δθ
.
 = [t][U

.
]T (Eq 26)

where

[t] =




−

t1x

L1
, −

t1y

L1
, −

t1z

L1
, 

t1x

L1
 + 

t2x

L2
, 

t1y

L1
 + 

t2y

L2
, 
t1z

L1
 + 

t2z

L2
, −

t2x

L2
, −

t2y

L2
, −

t2z

L2





[U
.
] = [u

.
1, v

.
1, w

.
1, u

.
2, v

.
2, w

.
2, u

.
3, v

.
3, w

.
3]

Therefore, the damping energy due to the in-plane rota-
tional damping about the drilling direction of a node is ex-
pressed as:

Edd = 
1
2

 Cdδθ
.
2 (Eq 27)

The corresponding damping coefficient, Cd, is an empirical
artificial value that is sufficiently small. The in-plane rotational
spring can be considered in a similar manner. The correspond-
ing incremental angle between bar 2-5 and bar 5-8 during one
step can be expressed by:

δθ = − 
1
L1

 t1 ⋅ u1 − 
1
L2

 t2 ⋅ u2 (Eq 28)

where u1 is the relative displacement vector of node 2 with re-
spect to node 5 and u2 is that of node 8 with respect to node 5.

Then, Eq 28 can be described in the matrix form as:

δθ = [t][U]T (Eq 29)

Therefore, the bending energy due to this node spring is ex-
pressed as:

Esd = 
1
2

 Kdδθ2 (Eq 30)

The spring coefficient Kd is an empirical artificial value that
is sufficiently small. On substituting Eq 29 into Eq 30 and dif-
ferentiating twice with respect to [U] under the assumption that
Kd and [t] are independent of the displacement [U] during one
step, the corresponding stiffness is obtained as:

[K]9×9
e  = Kd[t]T[t] (Eq 31)

3.4 Lumping Scheme

The computational efficiency and accuracy of the explicit
procedure is based on the implementation of an explicit inte-
gration rule along with the use of lumped element mass matri-
ces (Ref 8-11).

[M][a] = [F],   [a] = [M]–1[F] (Eq 32)

If matrix [M] is lumped as a diagonal matrix, matrix in-
version is not needed, and a solution can be directly obtained
by a linear equation, ai = mi

−1fi. The lumping scheme is com-
putationally economic because matrix inversion involves
large computing time. Often in dynamic analysis, the use of
lumping mass renders more accurate results than consistent
mass.

In this study, the lumping scheme is expressed as:

mpq
e  = 








αδij  ∫  
Ωe

ρNa
2dΩ,   a = b

         0,                 a ≠ b
(Eq 33)

where

α = 

∫  
Ω e

ρdΩ

(Total element)

∑ 

a=1

n
eg

∫  
Ωe

ρNa
2dΩ





Amount of diagonal
entries of consistent mass





where Ωe is element domain, p and q are element equation num-
bers, and a and b are element node numbers. In this method,
lumped mass is proportional to the diagonal part of the consis-
tent mass matrix and the positive valued lumped mass can be al-
ways obtained. In the above equation, the constant α is used to
conserve the total element mass.
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3.5 The Efficient Contact and Friction Treatment
Scheme for Dynamic Explicit Integration

The explicit contact algorithm takes advantage of a small
time increment required by the stability limit (Ref 8). The use

of small increments is advantageous in that it vastly simplifies
the implementation of contact conditions.

In the work described in this article, the contact and friction
scheme is the mixed form of the skew boundary condition and
the direct trial-and-error method (Ref  9). The accelerations,
velocities, and displacements are calculated first without tak-
ing the contact conditions into consideration. Then, the pene-
tration distance h and the tool and sheet normal directions of
contact points are calculated as in Fig. 3.

From the above calculation, the skew boundary condition is
applied and the resisting force to prevent the penetration of a
node is readily calculated as:

N = mhn/∆t2 (Eq 34)

where m is a nodal lumping mass and n is a normal vector. If it
is assumed that the motion of the tools is not influenced by the
contact itself, the acceleration changes as:

a = apred + acorr = apred + N/m (Eq 35)

and the corrections to the velocity and displacement are calcu-
lated as:

V = Vpred + acorr∆t  u = upred + Vcorr∆t (Eq 36)

For friction, the increment is first solved without taking fric-
tion into consideration, and the skew boundary condition is ap-
plied in Fig. 4. Under the skew boundary condition, it is not
necessary to define a surface direction tc along which a slip in-
crement rc is measured. The resisting force Tc required to pre-
vent slip is then calculated in the same way as the calculation of
the force required to prevent penetration:

Tc = –mrc/∆t2 (Eq 37)

where rc is the slip increment.
Accordingly, the friction force is calculated as:

Tfrict = 
Tc

|Tc|
 min (Tcr, |Tc|) (Eq 38)

The resisting force |Tc| is compared with the critical force Tcr
= µ|N|. If the resisting force is less than the critical force, a
sticking condition is assumed and then the resisting force is
simply applied. If the resisting force is larger than the critical
force, a slipping condition is assumed and the friction force is
assumed to obey Coulomb’s friction law. The procedures of
friction force calculation and stick/slip check are summarized
in Fig. 5.

Fig. 3 Schematic of the contact scheme. (a) Impending contact
of two surfaces. (b) Surfaces in predicted configuration. (c) Ki-
nematically compliant surfaces

Fig. 4 Schematic of friction and stick/slip check
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4. Results and Discussion

4.1 Deep Drawing of a Fuel Tank

A fuel tank is difficult to simulate because the tool surface
geometry has embossing in order to impose the rigidity in the
middle part of the product, and there exists higher-order non-
linearities of contact and friction. For implicit analysis, the con-
verged results cannot be obtained due to complex geometry
including the embossing. The rigid tool is modeled by CATIA
computer-aided design/computer-aided manufacturing
(CAD/CAM) system (Dassautt Systems, Suresnes, France).
Figure 6 shows the entire tool surface described with 31,800
nonparametric patches. In the case of complex large-scale
problems, the consuming time of contact treatment with non-
parametric scheme is 4 to 5 times shorter than parametric
scheme (Ref 12). Figure 7 shows the photograph of the de-
formed experimental shape at the final punch stroke. In actual
practice, the product contains embossed reinforcements to im-
pose rigidity in the middle part of the product and has draw
beads. In the simulation, however, the tool was simplified by

ignoring the draw beads. For the dynamic explicit simulations,
three-node damping energy augmented BEAM element is
used. The blank has an original rectangular shape of 1020 by
700 mm and 2400 triangular elements are employed.

The material and process variables used in the analysis are
as follows:

• Initial sheet thickness, 0.8 mm
• Stress-strain characteristics, σ = 526.0 (0.0074 + ε )0.239

MPa
• Young’s modulus, E = 2 × 105 MPa
• Lankford value for normal anisotropy, r = 1.79
• Coulomb coefficient of friction, µ = 0.1
• Blankholding force, 890 kN

Coulomb forces are computed and assigned to these nodes.
The explicit analysis is carried out with a constant punch veloc-
ity of 10 m/s. This punch velocity of 10 m/s, which does not af-
fect solution reliability and is able to provide economic
analysis, is chosen from the numerical tests of various punch
speed. In the same way, for economic analysis the mass-scaling
scheme in which 50 times the real density, which does not af-
fect solution reliability, is employed. The velocity scaling and
mass scaling methods have identical effects on solution time

Fig. 6 Schematic view of the nonparametric tool surfaces for
fuel tank stamping

Fig. 5 Flow chart for friction force calculation and stick/slip
check
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and accuracy in attempting to find a static solution using a dy-
namic explicit formulation from simulation results because of
not using the rate-dependent material. If the rate-dependent
material is used, the effects of the two scaling methods may be-
have differently. Figure 8 shows the comparison of the de-

formed edge contour predicted by the present analysis with the
experimental results. The edge contour is somewhat different
from the experimental result. This discrepancy is partly due to
the lack of draw beads. Figure 9 shows the deformed configu-
ration and thickness strain distribution by the dynamic explicit
analysis at the punch stroke of 113 mm. This dynamic explicit
analysis predicts well the most fragile region, which has a steep
slope and sharp corner as shown in Fig. 7. To investigate the
simulated results in more detail, the thickness strain distribu-
tion at an arbitrarily chosen section is compared with the ex-
perimental results in Fig. 10. The overall tendency of strain
distribution is similar to the experimental results. However, a
little higher strain level in the dynamic explicit analysis is ob-
tained because of the faster punch velocity and the mass scaling
scheme employed for the efficient analysis. The deviation can
be considered from the introduction of many assumptions for
the efficient and simple analysis, the limitation of analysis code
itself, the measurement error of experimental results, and so
forth. The whole computation time of the dynamic explicit
elastic-plastic scheme takes about 4 h in HP/730 workstation
(Hewlett Packard Co.). From the above example, the devel-
oped dynamic explicit elastic-plastic scheme has been success-
fully applied to the difficult and complicated three-dimensional
automotive body panel stamping problems.

4.2 Deep Drawing of a Rear Hinge

The rear hinge is one of the important sheet metal parts that
make up the body of a car and is one of difficult-to-form sheet
parts because it has very complex geometry, steep slope, and
sharp edge and corners. The raw computer-aided engineering
(CAE) surface data are constructed using the commercial CAD
system CATIA. A special conversion module that can generate
a rectangular array of grid points from the raw CAD surface
data is used for the nonparametric patch approach. The blank
has an original rectangular shape of 890 by 512 mm. Unlike the
other sheet metal forming processes, the stamping process of a
rear hinge consists of two stages. In the first stage, the initial
sheet blank is held by the blank holder, that is, the binder sur-
faces, and in the second stage it is further formed into the final
shape of the part. The initial sheet blank at the holding stage has

(a)

(b)

Fig. 7 Experimental specimens of a fuel tank stamping

Fig. 8 Comparison of the simulated results with the experi-
ment for the deformed edge shape: a fuel tank stamping process

Fig. 9 Thickness strain distribution and deformed configura-
tion of a fuel tank predicted by the dynamic explicit elastic-plas-
tic analysis at the final stage
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often been called binder wrap. Thus, the binder wrap analysis is
an indispensable step for the stamping analysis, since it pro-
vides such important data for stamping analysis as prediction of
initial punch contact, draw depth, and so forth. In the work de-
scribed in this article, the binder-wrap analysis, which is con-
sidered the nonlinear elastic finite element method, and the
nonparametric patch approach is performed (Ref 13). The rea-
son for using the nonlinear elastic finite element method is that
the elastic-plastic finite element method requires a large
amount of computational time and does not render any differ-
ence in the shape of the binder wrap. Therefore, the nonlinear
elastic finite element method is more effectively applicable,
and the nonparametric patch approach can save much computa-
tional time.

The material and process variables used in the analysis are:

• Initial sheet thickness, 1.2 mm
• Sheet material, cold-rolled steel

• Stress-strain characteristics, σ = 575.0 (0.006 + ε)0.21 MPa
• Young’s modulus, E = 2 × 105 MPa
• Lankford value, r = 1.88
• Coulomb coefficient of friction, µ = 0.1
• Blankholding force, 800 kN

Coulomb forces are computed and assigned to these nodes.
For this analysis, 1904 nodes and 3680 triangular damping en-
ergy augmented BEAM elements are employed. Figure 11
shows the schematic view of the tool surfaces in the case of
nonparametric patch approach in which 23,432 nonparametric
patches are used to describe the punch and the die. Figure 12
shows the photograph of the deformed experimental shape at
the final punch stroke. In actual practice, the product contains
draw beads. In the simulation, however, the tool was simplified
by ignoring the draw beads. The explicit analysis was carried
out with a constant punch velocity of 10 m/s. This punch veloc-
ity of 10 m/s, which does not affect solution reliability and is
able to provide economic analysis, is chosen. In the same way,
for efficient analysis the mass-scaling scheme in which 50
times the real density, which does not affect solution reliability,
is employed. Figure 13 shows the comparison of the deformed
edge contour predicted by the present analysis with the experi-
mental results. The edge contour is somewhat different from
the experimental result. This discrepancy is partly due to the
lack of draw beads. Figure 14 shows the deformed configura-
tion and thickness strain distribution by the dynamic explicit
analysis at the final configuration (punch stroke = 122 mm).
The possibility of fracture in side-wall region is higher than in
the upper region because it is in plain strain state even though
those region are in same strain level. This dynamic explicit
analysis predicted well the most fragile region. To investigate
the simulated results in more detail, the thickness strain dis-
tribution at an arbitrarily chosen section was compared with
the experimental results in Fig. 15. The overall tendency of
strain distribution is similar to the experimental results.

(a)

(b)

Fig. 10 Thickness strain distribution for a fuel tank stamping
process. (a) Baseline on initial sheet blank for strain distribution
measurement. (b) Comparison of thickness strain distribution on
the line

Fig. 11 Schematic view of the nonparametric tool surfaces for
rear hinge stamping
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(a)

(b)

Fig. 12 Experimental specimens of a rear hinge stamping

Fig. 14 Thickness strain distribution and deformed configura-
tion of a rear hinge predicted by the dynamic explicit elastic-
plastic analysis at the final stage

Fig. 13 Comparison of the simulated results with the experi-
ment for the deformed edge shape: a rear hinge stamping process

Fig. 15 Thickness strain distribution for a rear hinge stamping
process. (a) The baseline on initial sheet blank for strain distribu-
tion measurement. (b) Comparison of thickness strain distribu-
tion on the line

(a)

(b)
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However, a little higher strain level in the dynamic explicit
analysis is obtained because of the faster punch velocity and the
mass-scaling scheme employed for the efficient analysis. The
deviation might be considered to originate from the introduc-
tion of many assumptions for the efficient and simple analysis,
the limitation of analysis code itself, the measurement error of
experimental results, and so forth. The whole computation time
of the dynamic explicit elastic-plastic scheme took about 8.5 h
on a CRAY C90 (Silicon Graphics, Inc.). From the analysis, it
is found that the dynamic explicit elastic-plastic method can be
effectively applied to the huge and extremely difficult prob-
lems of automotive body panel stamping.

5. Conclusions

The performance of the elastic-plastic dynamic explicit al-
gorithms is investigated, and the numerical results are com-
pared to the experimental results with good agreement. Deep
drawings with complex irregular die geometries such as form-
ing of a fuel tank and a rear hinge are simulated. Provided that
the overall numerical model is properly derived, the authors
have shown that the elastic-plastic dynamic explicit formula-
tion is an accurate, efficient, and wide-ranging tool for simula-
tion of complex automotive body panel stamping problems.

In sheet metal forming, the amount of elastically recovered
displacement is relatively large, even though the elastically re-
covered strain is small, because the dimension of thickness is
much smaller as compared with other dimensions of the sheet
metal. Highly nonlinear analysis of sheet forming is, by the na-
ture of the process modeled, not very stable. The elastic-plastic
model is considered to be more numerically stable since it in-
cludes elastic effects. During sheet forming, especially in com-
plex deep drawing, relatively large parts of the sheet cease to be
plastically deformed.
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